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Even though people in our contemporary technological society are
depending on communication, our understanding of the under-
lying laws of human communicational behavior continues to be
poorly understood. Here we investigate the communication pat-
terns in 2 social Internet communities in search of statistical laws
in human interaction activity. This research reveals that human
communication networks dynamically follow scaling laws that may
also explain the observed trends in economic growth. Specifically,
we identify a generalized version of Gibrat’s law of social activity
expressed as a scaling law between the fluctuations in the number
of messages sent by members and their level of activity. Gibrat’s
law has been essential in understanding economic growth pat-
terns, yet without an underlying general principle for its origin.
We attribute this scaling law to long-term correlation patterns in
human activity, which surprisingly span from days to the entire
period of the available data of more than 1 year. Further, we pro-
vide a mathematical framework that relates the generalized ver-
sion of Gibrat’s law to the long-term correlated dynamics, which
suggests that the same underlying mechanism could be the source
of Gibrat’s law in economics, ranging from large firms, research and
development expenditures, gross domestic product of countries, to
city population growth. These findings are also of importance for
designing communication networks and for the understanding of
the dynamics of social systems in which communication plays a
role, such as economic markets and political systems.
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T he question of whether unforeseen outcomes of social activ-
ity follow emergent statistical laws has been an acknowledged

problem in the social sciences since at least the last decade of the
19th century (1–4). Earlier discoveries include Pareto’s law for
income distributions (5), Zipf’s law initially applied to word fre-
quency in texts and later extended to firms, cities and others (6),
and Gibrat’s law of proportionate growth in economics (7–9).

Social networks are permanently evolving and Internet commu-
nities are growing more each day. Having access to the commu-
nication patterns of Internet users opens the possibility to unveil
the origins of statistical laws that may lead us to the better under-
standing of human behavior as a whole. In this paper, we analyze
the dynamics of sending messages in 2 Internet communities in
search of statistical laws of human communication activity. The
first online community (OC1) is mainly used by the group of men
who have sex with men (MSM).∗ The data consists of over 80,000
members and more than 12.5 million messages sent over the course
of 63 days. The target group of the second online community
(OC2) is teenagers (10). The data covers 492 days of activity with
more than 500,000 messages sent among almost 30,000 members.
Both web sites are also used for social interaction in general. All
data are completely anonymous, lack any message content, and
consist only of the times at which the messages are sent and the
identification numbers of the senders and receivers.

The act of writing and sending messages is an example of an
intentional social action. In contrast to routinized behavior, the
actants are aware of the purpose of their actions (2, 3). Nev-
ertheless, the emergent properties of the collective behavior of
the actants are unintended. In Fig. 1A, we show a typical exam-
ple of the activity of a member of OC1 depicting the times when

the member sends messages. Figure 1B provides the cumulative
number of messages sent (green curve) compared with a random
surrogate dataset (brown curve) obtained by shuffling the data, as
discussed in Materials and Methods. As would be expected, there
are large fluctuations in the members’ activity when compared
with a random signal (11–13, 15). The messages sent at random
display small temporal fluctuations, whereas the OC1 member,
sends many more messages in the beginning and a lot fewer at
the end of the period of data acquisition (as also seen in Fig. 1C,
displaying the number of messages sent per day). Although such
extreme events or bursts have been documented for many systems,
including e-mail and letter post communication, instant messag-
ing, web browsing and movie watching (11–15), their origin is still
an open question.

Results
Growth in the Number of Messages
The cumulative number mj(t) expresses how many messages have
been sent by a certain member j up to a given time t [for better
readability, we will not write the index j explicitly, m(t); see details
on the notation in the SI Appendix, Sec. I]. The dynamics of m(t)
between times t0 and t1 within the period of data acquisition T
(t0 < t1 ≤ T) can be considered as a growth process, where each
member exhibits a specific growth rate rj (r for short notation):

r ≡ ln
m1

m0
, [1]

where m0 ≡ m(t0) and m1 ≡ m(t1) are the number of messages
sent until t0 and t1, respectively, by every member. To character-
ize the dynamics of the activity, we consider 2 measures. (i) The
conditional average growth rate, 〈r(m0)〉, quantifies the average
growth of the number of messages sent by the members between
t0 and t1 depending on the initial number of messages, m0. In other
words, we consider the average growth rate of only those mem-
bers who have sent m0 messages until t0 (see Materials and Methods
for more details). (ii) The conditional standard deviation of the
growth rate for those members who have sent m0 messages until t0,
σ(m0) ≡ √〈(r(m0) − 〈r(m0)〉)2〉, expresses the statistical spread or
fluctuation of growth among the members depending on m0. Both
quantities are relevant in the context of Gibrat’s law in economics
(7–9) which proposes a proportionate growth process, entailing
the assumption that the average and the standard deviation of the
growth rate of a given economic indicator are constant and inde-
pendent of the specific indicator value. That is, both 〈r(m0)〉 and
σ(m0) are independent of m0 (9).

In Fig. 2 A and B, we show the results of 〈r(m0)〉 and
σ(m0) versus m0 for both online communities. We find that the
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Fig. 1. A typical example of an individuals’ message activity. (A) Instants
at which messages were sent by a member belonging to OC1. (B) Cumula-
tive number of messages m(t) (green) and the same but with the messages
placed at random (brown). (C) Sequence of number of messages sent per day,
μ(t), for the same individual. (D–F) Color-coded sequences μ(t) for members
sending M = 100; 1,000; or 10,000 messages overall, respectively. The color
is proportional to the logarithm of the number of messages per day (red, 1
message; blue, 400 messages; white, no message).

conditional average growth rate is fairly independent of m0. On
the other hand, the standard deviation decreases as a power-law
of the form:

σ(m0) ∼ m−β

0 . [2]

We obtain by least-square fitting the exponents βOC1 =
0.22 ± 0.01 for OC1 and βOC2 = 0.17 ± 0.03 for OC2 (the val-
ues deviate slightly for large m0 due to low statistics). Although
the web sites are used by different member populations, the power
law and the obtained exponents are quite similar. The exponents
are also close to those reported for growth in economic systems
such as firms and countries (0.15 − 0.18) (16), research and devel-
opment expenditures at universities (0.25) (17), scientific output
(0.28−0.4) (18), and city population growth (0.19−0.27) (19). The
approximate agreement between the exponents obtained for very
different systems (social or of human origin) can be considered as
a generalization of Gibrat’s law, suggesting that the mechanisms
behind the growth properties in different systems may originate
in the human activity represented by Eq. 2.

Figure 2C and D depicts the results when we randomize the
data of OC1 and OC2, respectively (see Materials and Methods for
details of the randomization procedure), such that any temporal
correlations are removed. The typical dynamics for such surrogate

data set are shown in Fig. 1B (the brown curve), which displays
a clear random pattern of small fluctuations in comparison with
the original data of larger fluctuations (green curve). We find that
the random signal displays a close to constant average growth rate
〈r(m0)〉 and that the fluctuations behave as in Eq. 2 but with an
exponent βrnd = 1/2 (Fig. 2 C and D). The origin of this value
has a simple explanation: If an isolated individual randomly flips
an ideal coin with no memory of the previous attempt, then the
fluctuations from the expected value of the fraction of obtained
heads decay as a square-root of the number of throws, implying
βrnd = 1/2. In contrast to randomness, here we hypothesize that
the origin of the generalized version of Gibrat’s law with β < 1/2
in Eq. 2 is a nontrivial long-term correlation in communication
activity. These correlations possibly arise from internal and exter-
nal stimuli from other members transmitted through the highly
connected network of individuals, an effect that is absent in the
randomized data. The exponent value of β ≈ 0.2 for OC1 and OC2
implies that the fluctuations of very active members are smaller
than the ones of less active members, but they are significantly
larger compared with the random case (compare Fig. 2 A and B
with Fig. 2 C and D).

Long-Term Correlations
The exceptional quality of the data (more than 10 million mes-
sages spanning several effective decades of magnitude in terms
of both activity and time) allows to test the above hypothesis by
investigating the presence of temporal correlations in the individ-
uals’ activity. We aggregate the data to records of messages per
day (an example is shown in Fig. 1C) to avoid the daily cycle in
the activity and analyze the number of messages sent by individ-
uals per day, μ(t), where t denotes the day [m(t) ≡ ∑t

t′=1 μ(t′),
Fig. 1 D–F shows the color coded daily activity of 3 members in
OC1]. For every member, we obtain a record of a length of 63 days
(OC1) or 492 days (OC2). We note that former studies reporting
Eq. 2 (such as refs. 16–19) typically were not based on data with
temporal resolution as we use it here and therefore were not able
to investigate its origin in terms of temporal correlations.

We quantify the temporal correlations in the members’ activity
by mapping the problem to a 1-dimensional random walk. The
quantity Y (t) ≡ ∑t

t′=1(μ(t′) − 〈μ(t)〉), where 〈μ(t)〉 is the aver-
age of the corresponding record μ(t), represents the position of
the random walker that performs an up or down step given by
μ(t′) − 〈μ(t)〉 at time step t′. The correlations after Δt steps are
reflected in the behavior of the root-mean-square displacement
F(Δt) ≡ √〈[Y (t + Δt) − Y (t)]2〉 (20), where 〈·〉 is the average
over t and members. If the activity μ(t) is uncorrelated or short-
term correlated, then one obtains F(Δt) ∼ (Δt)1/2, Fick’s law of
diffusion, after some cross-over time. In the case of long-term
correlations, the result is a power-law increase

F(Δt) ∼ (Δt)H , [3]

where H > 1/2 is the fluctuation exponent [also known as Hurst
exponent (20)]. In statistical physics, long-term correlation or per-
sistence is also referred to as long-term “memory”. Because, in
general, the records might be affected by trends, we use the stan-
dard detrended fluctuation analysis (DFA) (21) to calculate H (see
SI Appendix, section III for a detailed description).

The results for OC1 are shown in Fig. 3 A and B, where we
calculate Eq. 3 by separating the members in groups with differ-
ent total number of messages sent by the members, M . We find
that F(Δt) asymptotically follows a power law with H ≈ 1/2 for
the less active members who sent fewer than 10 messages in the
entire period (M < 10). The dynamics of the more active members
display clear long-term correlations. We find that the fluctuation
exponent increases to H ≈ 0.75 for members with M > 103 (see
Fig. 3B). The smaller value of H for less active members could
be due to the small amount of information that these members
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Fig. 2. Average and standard deviation of the growth rate versus number of messages. (A) Results for OC1. The average growth rate of messages conditional
to m0 is almost constant and the standard deviation decays with an exponent βOC1 = 0.22 ± 0.01. (B) Results for OC2. The standard deviation conditional to
m0 decays with an exponent βOC2 = 0.17 ± 0.03. (C) Results for OC1, when the messages are shuffled, displaying βrnd = 1/2. (D) Results for OC2, when the
messages are shuffled. In all cases, t0 corresponds to half of the period of data acquisition and t1 to the end, which we found to provide optimal statistics (see
SI Appendix, Fig. 1).

provide in the available time of data acquisition. When we shuf-
fle the data to remove any temporal correlations, we obtain the
random exponent Hrnd = 1/2 (as seen in Fig. 3B), confirming that
the correlations in the data are due to temporal structure.

The dynamics of the message activity in OC2 is similar to OC1
(see Fig. 3C). On large time scales, we measure the fluctuation
exponent increasing from H ≈ 1/2 to H ≈ 0.9, with increasing M
(the exponents for very active members are based on poor statis-
tics and therefore carry large error bars). Analogous to the results
obtained for OC1, there are no correlations in the shuffled records
(Hrnd = 1/2 in Fig. 3D). The fact that H > 1/2 means that a sud-
den burst in activity of a member persists on times scales ranging
from days to years. The distribution of activity is self-similar over
time. Similar correlation results have been found in traded values
of stocks and e-mail data (22).

Relation Between β and H
Next, we elaborate the mathematical framework that relates the
growth process Eq. 2 to the long-term correlations, Eq. 3. To relate
the exponent from Eq. 2, β, to the temporal correlation exponent
γ, from Eq. 4, and therefore to H , one can first rewrite Eq. 1 as

r = ln
m1

m0
= ln

m0 + Δm
m0

with Δm = m1 − m0

= ln
(

Δm
m0

+ 1
)

≈ Δm
m0

for small
Δm
m0

.

Next, the total increment of messages Δm is expressed in terms of
smaller increments μ(t), such as messages per day:

Δm =
t0+Δt∑
t=t0+1

μ(t),

which is (assuming stationarity) statistically equivalent to Δm =∑Δt
t=1 μ(t), and one can write r ≈ 1

m0

∑Δt
t=1 μ(t) for the growth rate.

The conditional average growth is then

〈r(m0)〉 =
〈

1
m0

Δt∑
t=1

μ(t)

〉
≈ 1

m0

Δt∑
t=1

〈μ(t)〉.

Then the conditional standard deviation σ(m0) =√〈[r(m0) − 〈r(m0)〉]2〉 can be written in terms of the autocorre-
lation function as follows:

r(m0) − 〈r(m0)〉 = 1
m0

(
Δt∑
t=1

μ(t) −
Δt∑
t=1

〈μ(t)〉
)

[r(m0) − 〈r(m0)〉]2 = 1
m2

0

(
Δt∑
t=1

(μ(t) − 〈μ(t)〉)
)2

〈[r(m0) − 〈r(m0)〉]2〉 ≈ 1
m2

0

Δt∑
i

Δt∑
j

σ2
μC(j − i),

where C(Δt) = 1
σ2
μ
〈[μ(t) − 〈μ(t)〉][μ(t + Δt) − 〈μ(t)〉]〉 is the

autocorrelation function of μ(t) and σμ is the standard devia-
tion of μ(t). The autocorrelation function C(Δt) measures the
interdependencies between the values of the record μ(t). For
uncorrelated values, C(Δt) is zero for Δt > 0 because, on aver-
age, positive and negative products of the record will cancel out
each other. In the case of short-term correlations, C(Δt) has a
characteristic decay time, Δt×. A prominent example is the expo-
nential decay C(Δt) ∼ exp(−Δt/Δt×). Long-term correlations
are described by a slower decay, namely a power-law

C(Δt) ∼ (Δt)−γ, [4]

12642 www.pnas.org / cgi / doi / 10.1073 / pnas.0902667106 Rybski et al.
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Fig. 3. Long-term correlations in the message activity of OC1 (A and B) and OC2 (C and D). (A) DFA fluctuation functions averaged conditional to M, the total
number of messages sent by each member (black, 1-2; red, 3-7; green, 8-20; blue, 21-54; orange, 55-148; brown, 149-403; maroon, 404-1096; violet, 1097-2980;
turquoise, 2981-8103). The dotted lines serve as guides, the one in the bottom corresponds to the uncorrelated case, whereas the one in the top corresponds
to the exponent 0.75. (B) Fluctuation exponent H measured from A on the scales 10 days ≤ Δt ≤ 63 days as a function of the total number of messages sent, M,
for real (blue) and individually shuffled (green) records. (C) DFA fluctuation functions averaged conditional to M (colors as in A). The dotted lines correspond
to the uncorrelated case (bottom) and to the exponent 1 (top). (D) Fluctuation exponents obtained from C on the scales 32 days ≤ Δt ≤ 200 days as a function
of the total number of messages sent, M. Due to weak statistics causing large error bars, we do not consider the last 2 values for M > 500 as reliable. For
clarity, the fluctuation functions in A and C are shifted vertically.

with the correlation exponent 0 < γ < 1, which is related to the
fluctuation exponent H from Eq. 3 by γ = 2 − 2H (20). We note
that γ = 1 (or γ > 1) corresponds to an uncorrelated record with
H = 1/2. A key property of long-term correlations is a pronounced
mountain–valley structure in the records (20). Statistically, large
values of μ(t) are likely to be followed by large values and small
values by small values. Ideally, this feature holds on all time scales,
which means a sequence in daily, weekly, or monthly resolution is
correlated in the same way as the original sequence.

Assuming long-term correlations asymptotically decaying as in
Eq. 4, we approximate the double sum with integrals and obtain

〈[r(m0) − 〈r(m0)〉]2〉 ≈ 1
m2

0
σ2

μ

∫∫ Δt

1
(j − i)−γdjdi ∼ 1

m2
0
σ2

μ(Δt)2−γ.

In order to relate Δt and m0, one can use Δt = x t0 [where x
is an arbitrary (small) constant that simply states how large Δt is
compared with t0], and m0 ∼ t0, which states that the number of
messages is proportional to time assuming stationary activity. By
using these 2 arguments we obtain

〈[r(m0) − 〈r(m0)〉]2〉 ≈ 1
m2

0
σ2

μ(x)2−γ(t0)2−γ ∼ σ2
μm−γ

0 ,

σ(m0) ∼ σμm−γ/2
0 .

Comparing this equation with Eq. 2, we finally obtain β = γ/2,
and, with γ = 2 − 2H ,

β = 1 − H . [5]

Eq. 5 is a scaling law formalizing the relation between growth
and long-term correlations in the activity and is confirmed by
our data. For OC1, we measured βOC1 ≈ 0.22 yielding HOC1 ≈

0.78 from Eq. 5, which is in approximate agreement with the
(maximum) exponent we obtained by direct measurements for
OC1 (H = 0.75 ± 0.05 from Fig. 3B). For OC2, we obtained
βOC2 ≈ 0.17 and therefore HOC2 ≈ 0.83 through Eq. 5, which
is not too far from the (maximum) exponent found by direct
measurements for OC2 (H = 0.88 ± 0.03). According to Eq. 5,
the original Gibrat’s law (βG = 0) corresponds to very strong
long-term correlations with HG = 1. This is the case when the
activity on all time scales exhibits equally strong correlations.
In contrast, βrnd = 1/2 represents completely random activity
(Hrnd = 1/2), as obtained for the randomized data in Fig. 3 B
and D.

The mathematical framework relating long-term correlations
quantified by H and the growth fluctuations quantified by β could
be relevant to other complex systems. While the generalized ver-
sion of Gibrat’s law has been reported for economic indicators
displaying β ≈ 0.2 (16–18), the origin of this scaling law is not
clear and is still being investigated. Our results suggest that the
value of β could be explained by the existence of long-term cor-
relations in the activity of the corresponding system ranging from
firms and markets to social and population dynamics. In turn, Eq.
5 establishes a missing link between studies of growth processes in
economic or social systems (16–18) and studies of long-term cor-
relations, such as in finance and the economy (23), Ethernet traffic
(24), and human brain (25) or motor activity (26). Our results fore-
shadow the possibility that systems involving other types of human
interaction, such as various Internet activities, communication via
cell phones, trading activity, etc., may display similar growth and
correlation properties as found here, offering the possibility of
explaining their dynamics in terms of the long-term persistence of
individuals’ behavior.

Rybski et al. PNAS August 4, 2009 vol. 106 no. 31 12643
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Growth of the Degree in the Underlying Social Network
Communication among the members of a community represents
a type of a social interaction that defines a network, whereas a
message is sent either based on an existing relation between 2
members or establishing a new one. There is considerable interest
in the origin of broad distributions of activity in social systems. Two
paradigms have been invoked for various applications in social sys-
tems: the “rich-get-richer” idea used by Simon in 1955 (27) and the
models based on optimization strategies as proposed by Mandel-
brot (28). Regarding network models, the preferential attachment
(PA) model has been introduced (29) to generate a type of sto-
chastic scale-free network with a power-law degree distribution in
the network topology. Considering the social network of members
linked when they exchange at least 1 message (that has not been
sent before), we examine the dynamic of the number of outgoing
links of each member [the out-degree k(t)] in analogy to Eq. 2.

We start from the empty set of nodes consisting of all the mem-
bers in the community and chronologically add a directed link
between 2 members when a messages is sent. In analogy to the
growth in the number of messages m(t) of each member, we study
the growth of the members’ out-degree k(t), i.e. the number of
links to others. We define the growth rate of every member as

rk = ln
k1

k0
, [6]

where k0 ≡ k(t0) is the out-degree of a member at time t0 and
k1 ≡ k(t1) is the out-degree at time t1. Again, there is a growth
rate for each member j, but for better readability we skip the index.
In Fig. 4, we study 〈rk(k0)〉, the average growth rate conditional
to the initial out-degree k0, and σk(k0), the standard deviation of
the growth rate conditional to the initial out-degree k0 for OC1
and OC2. We obtain almost constant average growth 〈rk(k0)〉 as a
function of k0 as in the study of messages.

The conditional standard deviation of the network degree,
σk(k0), is shown in Fig. 4 for both social communities. We obtain
a power-law relation analogous to Eq. 2:

σk(k0) ∼ k−βk
0 , [7]

with β-exponents very similar to those found for the number of
messages, namely βk,OC1 = 0.22 ± 0.02 for OC1 and βk,OC2 =
0.17 ± 0.08 for OC2. These values are consistent with those we
obtained for the activity of sending messages.

Next, we consider the preferential attachment model, which
has been introduced to generate scale-free networks (29) with
power-law degree distribution P(k) of the type investigated in
the present study. Essentially, it consists of subsequently adding
nodes to the network by linking them to existing nodes that are
chosen randomly with a probability proportional to their degree.

We consider the undirected network and study the degree growth
properties using Eqs. 6 and 7 and calculate the conditional aver-
age growth rate 〈rPA(k0)〉 and the conditional standard deviation
σPA(k0). The times t0 and t1 are defined by the number of nodes
attached to the network. Fig. 2 in the SI Appendix, section IV shows
the results where an average degree 〈k〉 = 20; 50,000 nodes in t0
and 100,000 nodes in t1 were chosen. We find constant average
growth rate that does not depend on the initial degree k0. The
conditional standard deviation is a function of k0 and exhibits a
power-law decay characterized by Eq. 7 with βPA = 1/2. The value
βPA = 1/2 in Eq. 5 corresponds to H = 1/2, indicating complete
randomness. There is no memory in the system. Because each
addition of a new node is completely independent from prece-
dent ones, there cannot be temporal correlations in the activity
of adding links. Therefore, purely preferential attachment type of
growth is not sufficient to describe the social network dynamics
found in the present study and further temporal correlations have
to be incorporated according to Eq. 3.

For the PA model, it has been shown that the degree of each
node grows in time as k(t) ∼ ( t

t∗ )b, where t∗ is the time when the
corresponding node was introduced to the system and b = 1/2 is
the dynamics exponent in growing network models (30). Accord-
ingly, the growth rate is given by rPA = b ln t1

t0
, which is a constant

independent of k0, in accordance with our numerical findings. Fur-
thermore, in the SI Appendix, section IV we analytically obtain the
exponent βPA = 1/2 and confirm the numerical results as well.
Interestingly, an extension of the standard PA model has been
proposed (31) that takes into account different fitnesses of the
nodes to acquiring links involving a distribution of b-exponents
and therefore a distribution of growth rates. This model opens
the possibility to relate the distribution of fitness values to the
fluctuations in the growth rates, a point that requires further
investigation.

Discussion
From a statistical physics point of view, the finding of long-term
correlations opens the question of the origin of such a persis-
tence pattern in the communication. At this point, we speculate
on 2 possible scenarios that require further studies. The ques-
tion is whether the finding of an exponent H > 0.5 is due to a
power-law (Levy-type) distribution (32, 33) in the time interval
between 2 messages of the same person or just from pure corre-
lations or long-term memory in the activity of people. In the first
scenario, the intervals between the messages follow a power law
(13, 34). Accordingly, the activity pattern comprises many short
intervals and few long ones, implying persistent epochs of small
and large activity. This fractal-like activity leads to long-term cor-
relations with H > 1/2 (see the analogous problem of the origin of

Fig. 4. Mean out-degree growth rate and standard deviation versus initial out-degree. (A) Results for OC1. The average growth of out-degree conditional
to the out-degree at t0 is almost constant. The standard deviation decays with an exponent βk,OC1 = 0.22 ± 0.02. (B) Results for OC2. The standard deviation
conditional to the out-degree at t0 decays with an exponent βk,OC2 = 0.17 ± 0.08. The quantities are analogous to those of Fig. 2 except that here the growth
rate of the out-degree rk is considered instead of the number of messages sent.

12644 www.pnas.org / cgi / doi / 10.1073 / pnas.0902667106 Rybski et al.
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long-term correlations in DNA sequences as discussed in ref. 33).
This scenario implies a direct link between the correlations and the
distribution of interevent intervals which can be obtained analyt-
ically. In the second scenario, the intervals between the messages
do not follow a Levy-type distribution, but the value of the time
intervals are not independent of each other, again representing
long-term persistence. For example, the distribution of interevent
times could be stretched exponential [see recent work on the study
of extreme events of climatological records exhibiting long-term
correlations (35)]. Thus, deciding between these 2 possible scenar-
ios for the origin of correlations in activity requires an extended
analysis of interevent intervals as well as correlations to determine
whether the behavior is Levy-like or pure memory-like. A careful
statistical analysis is needed.

To some extent, the human nature of persistent interactions
enables the prediction of the actants’ activity. Our finding implies
that traditional meanfield approximations based on the assump-
tion that the particular type of human activity under study can be
treated as a large number of independent random events (Poisson
statistics) may result in faulty predictions. On the contrary, from
the growth properties found here, one can estimate the proba-
bility for members of a certain activity level to send more than
a given number of messages in the future. This result may help
to improve the proper allocation of resources in communication-
based systems ranging from economic markets to political sys-
tems. As a by-product, our finding that the activity of sending
messages exhibits long-term persistence suggests the existence of
an underlying long-term correlated process. This process can be
understood as an unknown individual state driven by various inter-
nal and external stimuli (36, 37) providing the probability to send
messages. In addition, the memory in activity found here could
be the origin of the long-term persistence found in other records
representing a superposition of the individuals’ behavior, such as
the Ethernet traffic (24), highway traffic, stock markets, and so
forth.

Materials and Methods
Calculations of 〈r(m0)〉, σ(m0) and Optimal Times t0 and t1. The
average growth rate, 〈r(m0)〉, and the standard deviation, σ(m0) =√〈r(m0)2〉 − 〈r(m0)〉2, are defined as follows. Calling P(r|m0) the conditional

probability density of finding a member with growth rate r(m0) with the
condition of initial number of messages m0, we obtain

〈r(m0)〉 =
∫

rP(r|m0) dr [8]

and

〈r(m0)2〉 =
∫

r2P(r|m0) dr. [9]

In order to calculate the growth rate in Eq. 1, one has to choose the times
t0 and t1 in the period of data acquisition T . Naturally, it is best to use all data
in order to have optimal statistics. Accordingly, t1 is chosen best at the end
of the available data (t1 = T ). We argue that if the choice of t0 is too small,
then m(t0) is zero for many members (those that send their messages later),
which are then rejected in the calculation because of the division in Eq. 1.
Conversely, if the choice of t0 is too large, then there is not enough time to
observe the member’s activity and r = 0 will occur frequently, indicating no
change (members have sent their messages before). Thus, there must be an
optimal time in between. In the SI Appendix, section II, Fig. 1, we plot, as a
function of t0, the number of members with at least 1 message at t0 [m0 > 0]
and further exhibit at least some activity until t1 = T [m1 − m0 > 0]. For both
online communities, we find an optimal t0 in the middle of the period of
observation t0 = T/2, a value that is used for the analysis in the main text.

Shuffling of the Message Data. The raw data comprises 1 entry for
each message consisting of the time when the message is sent, the sender
identifier, and the receiver identifier. For example:

time sender receiver
1 a b
2 a c
4 b a
6 c d
7 a b
…

At t = 1 member a sends a message to member b, at t = 2 member a sends
a message to member c, and so on.

The randomized surrogate dataset is created by randomly swapping the
instants (time) at which the messages are sent between 2 events chosen at
random. Thus, each message entry randomly obtains the time of another one,
meaning that the total number of messages is preserved and the associations
between them get shuffled. Temporal correlations are destroyed, but the set
of instants at which the messages are sent remains unchanged. For instance,
swapping events at t = 1 and t = 6 results in t = 1, c→d, and t = 6, a→b.
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